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I. Introduction 

 

The study of connectivity and planarity of graphs has a rich history that traces back to the early days of 

graph theory.  Much of the early motivation was provided by the desire to prove the famous 4-color 

theorem, a feat that was finally accomplished in the 1976 by Appel and Haken [3]. Along the way, many 

related questions arose concerning the structure of planar graphs, and many of these questions continue to 

generate interesting research. In 1982 Carsten Thomassen conjectured that every longest cycle of a 3-

connected graph has a chord [1].  In his article “Every Longest [Cycle] of a 3-Connected,     - Minor 

Free Graph Has a Chord” [1], Etienne Birmelé explores this conjecture for a certain class of 3-connected 

graphs.  The following assessment examines and expands upon Birmelé’s arguments. 

 

The title of Bermelé’s paper reveals the main goal of the research.  Specifically, the aim is to establish the 

theorem below. 

 

Theorem 1.  Every longest cycle of a 3-connected,      - minor free graph has a chord. 

 

To understand this statement and its proof, we must review some of the basic definitions of graph theory.  

For a more complete introduction, the reader is referred to the fine text by West [2].  

 

 

II. Definitions 

 

A graph   is a triple consisting of a vertex set    an edge set  , and a relation that associates with each 

edge two vertices called its endpoints.  Two vertices are adjacent (neighbors) if they are endpoints of the 

same edge.  A graph is simple if it has no loops or multiple edges. 

 
 Figure 1 - A simple graph with vertices A, B, C, D, E 

 



A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if 

they are consecutive in the list. A cycle is a graph with an equal number of vertices and edges whose 

vertices can be placed around a circle so that two vertices are adjacent if and only if they appear 

consecutively along the circle. 

 

 
Figure 2 - A path with 5 vertices and a cycle with 8 vertices 

 

A graph   is connected if each pair of vertices in   belongs to a path. The components of a graph   are its 

maximal connected subgraphs. The connectivity of   is the minimum size of a vertex set    such that 

    is disconnected or has only one vertex.  A graph   is k-connected if its connectivity is at least    

 
Figure 3 – The Petersen graph is 2-connected but not 3-connected 

 



A bipartite graph is a graph where the vertices can be partitioned into two disjoint subsets such that each 

subset contains no pairwise adjacent vertices.  By       we denote the complete bipartite graph where one 

partite set contains n vertices, the other m. 

 

 
Figure 4 - The Graph      

 

A minor of a graph   is a graph   that is obtained from   by a sequence of vertex and edge deletions and 

edge contractions. 

 

 
Figure 5 - The graph on the right is a minor of the graph on the left 

 

 

 

A cycle                (we take          has a chord if some    is adjacent to    where        

 



 
Figure 6 - An eight vertex cycle with a chord. 

 

A graph G is planar if it can be represented in the plane without crossing edges. Wagner’s Theorem 

[West, 269] states that a finite graph is planar if and only if it contains no    and no      minors.  

Therefore, Theorem 1 comes with a corollary. 

 

Corollary 2: Every longest cycle of a 3-connected planar graph has a chord. 

 
Figure 7 - A longest length cycle of the Petersen graph has multiple chords 

 

III. The Support of a Longest Cycle 

 

We now proceed with our proof of theorem. 

 

Let   be a 3-connected,      - minor free graph.  Let   be a cycle of   of longest length.  Suppose, by 

way of contradiction, that   has no chord. Let              be the vertices of   in cyclic order. 

 



Let           be the connected components of      .  We denote by      the set of vertices of attachment 

of the component     that is the set of vertices of   that are adjacent to a vertex of     

 

Definition 3: Let   be an arc of    that is a connected subgraph of    and let               We say that   

is a support of    if            

 

First, we present a short lemma with four observations about these vertices of attachment. 

 

Lemma 4: 

     (i)                          

     (ii)                                      

     (iii) Two consecutive integers of   cannot belong to the same       

     (iv) There are no integers                         and integers                  such that 

             and                    (By convention        ) 

 

Proof: 

     (i)  As                the removal of      disconnects    from     Therefore, as   is               3-

connected,           

     (ii)  If, for some                                   then all neighbors of    lie in     As   has no 

chord,    would then only have two neighbors, but then    could be disconnected from   by the removal 

of two vertices.  Therefore,                                      

 

      

 
Figure 8 - Lemma 4 part (iii) and (iv) 

 

     (iii)  and (iv) Figure 8 shows that both cases would contradict the fact that   is the longest cycle in     

∎ 

 

 



IV. Looking At Minimal Supports 

 

Consider a support   for some    such that   is minimal with respect to inclusion among all supports.  

That is, there does not exist a support   for some component    such that   is a proper subpath of  .  We 

may reorder the vertices of   as                 (where           , with   being a longest cycle 

of  ).  Notice that  is a proper subpath of     If      then consider      where   is any edge of     As 

                is a support for     and     is a proper subpath of    contradicting the 

minimality of      

 

Let    be the proper subpath of   that shares the same vertex set as  , except for the removal of the two 

endpoints of   (so    is the path            ).  By Lemma 4, part (iii),                    By 

Lemma 4 part (ii),                   

 

Let    and   be a support for    such that: 

1)         is non-empty. 

2)     is minimal with respect to inclusion.  That is, there is no support   for some    

satisfying the above and such that     is a proper subpath of      

3) Subject to the previous conditions,   is minimal with respect to inclusion. That is, there is no 

support   for some H  such that         is non-empty,          and   is a proper 

subpath of  . 

 

We then choose six (not necessarily totally distinct) vertices, referred to as vertices of interest: 

-Three distinct vertices of   i  (must be on  , as   is a support of Hi), including the two 

endpoints of  . 

-Three distinct vertices of      (must be on  , as   is a support of H ), including both endpoints 

of  , and one on    (note that the vertex on    may be an endpoint of  ). 

So, we have at least three vertices of interest, and at most six. 

 

First, we demonstrate that     is a proper subpath of C  

 

Suppose that the above held and that     C   Then, as   C  there exists an edge e of C such that 

  C  e   We can then rename C  e as      Note that, like       is a support for H   and      is a 

proper subpath of      contradicting the minimality of      

 



 
Figure 9 - Cycle Diagram 1        Figure 10 - Cycle Diagram 2 

 

 

We now separate the rest of our proof into twelve cases.  Notice that in all figures, the bold arcs may not 

be more than a single vertex, unless stated otherwise: 

 

V. Finding a K3,3 

 

Case 1:   is a subpath of      

 

 
Figure 11 - The case when P is a subset of Q 

 

In examining the diagram, recall that the bold arc to the left (possibly a single vertex) has one vertex of 

  i  that is an endpoint of  , and one vertex of      that is an endpoint of   (similarly with the right arc). 

The center bold arc (possibly a single vertex) has one vertex of   i  taken from somewhere on    (by 

Lemma 4 part (i) and the fact that   is a support of Hi,   i     is non-empty) as well as one vertex of 

     taken from somewhere on   . 

 

 



Claim:      r  i     and that some vertex of      lies on a sub-arc of   that is not bold. 

 

Proof: Suppose there is no vertex of      (for any    r ) in the non-bold sub-arc of   to the left 

(on the diagram). Then, by assumption and Lemma 4 part (iii), there must be one and only one 

vertex within this sub-arc of  , and it must be in     .  Now, consider the non-bold sub-arc of   

to the right.  The first vertex (proceeding counterclockwise) after the right endpoint of the central 

bold sub-arc can not belong to      (else it would violate Lemma 4 part (iii)), and it can not 

belong to   i  (else it would violate Lemma 4 part (iv), using the single vertex in      found in 

the other non-bold sub-arc of P followed by the vertex on the center bold arc in   i ), therefore 

this adjacent vertex must belong to some     , where i      ∎ 

 

 

If a vertex of some     , i     lies in the non-bold sub-arc of   on the left, then we have the right 

diagram of Figure 10.  Otherwise, there is exactly one vertex on this sub-arc and it is in     , and we have 

a vertex in      in the non-bold sub-arc to the right.  We then replace the   end of the central bold sub-arc 

of   with the vertex in the left non-bold sub-arc, giving us a new central bold arc and a case that is the 

same as that in Figure 11 by reflecting the image across a vertical line. 

 

 

Claim: By the minimality of     and   we must either have both endpoints of     in     , 

or there must be some vertex of   C         in     . 

 

Proof: Suppose no vertices of      lie in   C         and at least one endpoint of    is 

not in     . 

Then, let   be a subarc of   such that           v where vis one endpoint of   such that 

v       Then, as v      and there are no vertices of      on   C            includes all 

vertices of       and therefore   is a support of H    Notice that from our prior claim proof, 

        is non-empty.  Also,   is a proper subpath of     Therefore,     is a proper subpath 

of     or         and   is a proper subpath of    contradicting the minimality of our 

selection of     ∎   

 

 

Therefore, one of the two dotted lines in Figure 11 exists.  We then let the three bold arcs of C be 

       3and we let B  Hi B  H  and B3  H     C           3          These six 

subsets of   G  are disjoint and connected and each  i is linked to each B  by at least one edge.  

Therefore, by contracting each  i and B  to a single vertex, we obtain a  3 3 minor of G. 

 

Cases two through twelve are the elven distinct up to symmetry configurations when  is not a subpath of 

   

 

 

 

 



Case 2:  is not a subpath of    and the vertices of interest are ordered along     as indicated.   

 
Case 2  

By Lemma 4 part (iii), there must be some additional vertex between the left-most vertices of   i   

 

First, suppose that the only vertices there were of       then we may change our vertices of interest, 

replacing one from      with a new one in the middle.  We then produce the situation shown in Figure 12 

(Case 2(a)).   

 

Figure 12 - Case 2(a) 

 
 

 

We then have two sub-cases for this case.  There are two non-bold sub-arcs of       As each 

one has an i vertex of interest on one side and a   vertex of interest on the other, at least one of the 

two non-bold sub-arcs must have a vertex on it belonging to some     , where i      or else 

we would violate Lemma 4 part (iv).  If we have such a vertex in the left non-bold sub-arc then 



we have the first case on the right of Figure 12, else we have the second case on the right of 

Figure 12.   

 

 

In the first sub-case suppose there are no vertices of      in the right-most bold sub-arc, and 

there are none on   C         then letting   be the subarc of   such that           v 

where v is the right endpoint of     As v      and there are no vertices of      on   C  

          includes all vertices of       and is therefore a support of H    Note that as the   

vertex indicated exists,         is non-empty.  Also,   is a proper subpath of     Therefore, 

        (as v lies on    and   is a proper subpath of    contradicting the minimality of 

our selection of     Therefore, one of the two dotted lines must be an edge.  We then produce a 

 3 3minor as before with the three bold arcs being         3 and B  Hi  B  H   B3  H  

   C           3          Each of the  i and B  are disjoint, connected, and each  iis 

linked to each B by at least one edge, obtaining the  3 3 - minor. 

 

 

In the second sub-case suppose there are no vertices of      on   C         and the left 

endpoint of   is not in       then we let   be the subarc of     such that             

v where v is the left endpoint of     As v      and there are no vertices of      on   C  

          includes all vertices of       and is therefore a support of H    Note that as the   

vertex indicated exists,         is non-empty.  If v      , then        so    which is a 

proper subpath of     is a proper subpath of   contradicting the minimality of the selection of 

    Otherwise, as             v  and v        but v          is a proper subpath 

of      contradicting the minimality of our selection of     Therefore, one of the two dashed 

lines is an edge.  We then produce a  3 3minor as before with the three bold arcs as       and 

 3and B  Hi B  H  and B3  H     C           3          Each are disjoint 

and connected and each  iis linked to each B by at least one edge, obtaining the  3 3 - minor. 

 

 

Suppose, instead, there were a vertex u of some       i      between the two left-most vertices of 

interest of   i  as in Figure 13 (Case 2(b)). 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 13 - Case 2(b) 

 
Let the endpoint of   not lying on  be v  and suppose, by way of contradiction, that    C  

      v        is the empty set.  Then,     v is a support for       and by the 

placement of u we have         is non-empty, contradicting our selection of    as     v is 

a proper subpath of       Therefore, there exists some vertex of      on   C        v    

As before, we then produce a  3 3 minor using the three bold subarcs as        3 and B  

Hi B  H  and B3  H      C           3          

 

Case 3: Figure 14 

 
Case 3  

 

 

 

 

 

 

 



Figure 14 

 
 

Notice that were we to contract the bold arc lying on   in case 2(b) at the beginning of that case, we 

would have case 3.  Also, the only part that must be changed from case 2(b) is that first possibility of only 

vertices from      lying between the two vertices of   i is not possible, as one of the vertices of   i  

also is in       we must therefore have a vertex beloning to some       i       Otherwise, this case 

proceeds as case 2(b), as those two vertices being distinct was not necessary to prove case 2(b). 

 

 

Case 4: This case appeared as a possibility during case 2(a), and thus has already been shown. 

 
Case 4 

 

 

 

 

 



Case 5: Had we contracted the bold arc of case 4 that lay on      we would produce case 5.  As these 

vertices being distinct was not necessary, this case has already been shown. 

 
Case 5 

 

Case 6: Figure 15 

 
Case 6 

 

Figure 15 

 
By Lemma 4 part (iii), there must be at least one vertex from some      for some    between the two 

vertices of interest from      to the right. Suppose there are only vertices of   i   then were we to replace 



the central bold subarc of     with one from a vertex of   i  between the two bold subarcs with the 

central vertex of interest of      we find that this is as in case 3.  Therefore, we may assume there is a 

vertex of      for some i     between the two vertices of interest from      on the right.  At this 

point our proof proceeds in the same manner as the second sub-case of case 2(a), giving us a  3 3 - minor. 

 

Case 7: Figure 16 

 
Case 7 

 

 

Figure 16 

 
As the end vertices in the right bold subarc of     in case 2 were not required to be distinct, this case 

proceeds as in case 2. 

 

 

 

 

 



Case 8: Like case 7, this proceeds as a special case of case 2. 

 
Case 8 

 

Case 9: This is a special case of case 4. 

 
Case 9 

 

Case 10: 

 
Case 10 



Case 10 proves to be a problem case.  It does not allow for the same process as the other cases as we can 

not use a similar argument to force a vertex of some H  upon      There is also no alternative argument 

readily apparent to this author, nor found within Birmelé’s article to either exclude or deal with it.  

Therefore, we leave this problem case unresolved. 

 

Case 11: This case will be completed as a special case of case 12. 

 
Case 11 

 

Case 12: Figure 17 

 
Case 12 

 

 

 

 

 

 

 

 

 

 

 



Figure 17 

 
By Lemma 4 part (iii), there must be at least one vertex from some      for some    between the two 

vertices of interest from      to the right.  Suppose there are only vertices of   i   then the left of the two 

bold arcs on     must not be a single vertex (by Lemma 4 part (iii)), and this becomes case 4.  

Therefore, we may assume there is a vertex of      for some i     between the two vertices from 

     on the right.  Suppose that there are no vertices of      on   C         and the left endpoint of 

  is not in       then we let   be the subarc of     such that             v where v is the left 

endpoint of     As v      and         C          is empty,   is a support of H    As the left 

endpoints of   and   are distinct, v       Therefore, as             v and v        but 

v          is a proper subpath of      violating the minimality of the selection of     Therefore, 

either v       or         C          is non-empty.  Therefore, one of the two dashed lines is an 

edge.  We then produce a  3 3 minor as before with the three bold arcs as       and  3and B  

Hi B  H  and B3  H     C           3          Each are disjoint and connected and each 

 iis linked to each B by at least one edge, obtaining the  3 3 minor.  ∎ 

 

VI. Conclusion 

 

Throughout this paper, we have endeavored to prove that every the longest cycle of any          3-

connected,  3 3 - minor free graph must contain a chord using the techniques argued in Birmelé’s article 

[1] on the subject.  Using the 3-connectedness of the graph together with examining the supports of the 

components of G   C  we manage to see that assuming the lack of a chord forces the graph to contain a 

 3 3 - minor in all but one case.  With further research into the instance of this case, it could be possible to 

either have a complete proof of a large collection of graphs covered in Thomassen’s con ecture on the 

matter, or a possible counterexample to the conjecture. 
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